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A four-level tripod active-Raman-gain scheme is analyzed for obtaining phase-controlled gain, phase shift,
and group velocity at room temperature. The scheme can be used to eliminate significant probe field atten-
uation or distortion which is unavoidable in the scheme based on electromagnetically induced transparency.
It is shown that the intensity gain, phase shift, and group velocity of a probe field can be simultaneously
manipulated by changing the relative phase of two pump fields. The scheme is also different from that
proposed recently by Deng et al. where a probe-field gain always exists. New features of the scheme
presented here raise the possibility of designing rapidly responding optical switches and gates for optical
information processing.
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Control of intensity, phase, and propagating velocity of
electromagnetic fields has great technological importance
in the field of information science. In a solid state
medium such as an optical fiber[1], the requirement of
low light absorption necessarily implies the system must
work in off-resonance regime, which means that an ac-
tive control is difficult due to the lack of distinctive en-
ergy levels and transition selection rules. In recent years,
much effort has been made to study the optical property
of active media via electromagnetically induced trans-
parency (EIT)[2], in which an on-resonance excitation
scheme is employed. Due to the quantum interference
effect induced by a control field, the light wave prop-
agation in such media displays many striking features,
including a large suppression of optical absorption, a
significant reduction of group velocity, and a great en-
hancement of nonlinear Kerr effects, which are promis-
ing for many practical applications in optical information
processing[3−6].

However, a weakly driven EIT-based scheme has still
severe problems. One of them is the strong probe-
field attenuation and spreading at room temperature.
Another one is the very long response time due to
the ultraslow propagating velocity. In this letter, we
propose a new scheme to overcome these drawbacks.
The scheme is a modified form of the active-Raman-
gain (ARG) configuration, suggested recently by several
authors[7−12]. Contrary to EIT-based schemes where the
probe field operates in an absorption mode, the central
idea of the ARG-based scheme is that the probe field
operates in a stimulated Raman emission mode. We
show that, using our scheme a probe field can acquire
phase-controlled intensity gain, phase shift, and superlu-
minal group velocity, suffering no attenuation or distor-
tion. New features of our scheme raise the possibility of
rapidly responding optical switches and gates for infor-
mation science.

We consider a four-state tripod atomic system (Fig.
1(a)) interacting with two strong, continuous-wave (CW)

pump fields of angular frequencies ωL1 (|1〉 ↔ |4〉), ωL2

(|2〉 ↔ |4〉) and a weak, pulsed probe field of center angu-
lar frequency ωp (|4〉 ↔ |3〉). Under a rotating-wave ap-
proximation, the Schrödinger equation controlling atomic
response reads
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A4 + ΩL1A1 + ΩL2A2

+ΩpA3 = 0, (1d)

where Aj (j = 1, 2, 3, 4) is the probability amplitude
in an interaction picture of the bare atomic state |j〉
(with eigenenergy Ej). The states |1〉 and |2〉 are hy-
perfine splitting of the ground state. d4= ∆4 + iγ4 with
∆4= ωL1 − (E4 − E1)/h̄ = ωL2 − (E4 − E2)/h̄ being the
one-photon detuning and γ4 the decay rate of the state
|4〉. d3 = ∆3 + iγ3 with ∆3= ωL1 − ωp − (E3 − E1)/h̄=
ωL2 − ωp − (E3 − E2)/h̄ being the two-photon detuning

Fig. 1. Tripod four-state ARG system interacting with two
strong, CW pump fields of Rabi frequencies ΩL1, ΩL2 and a
weak, pulsed probe field of Rabi frequency Ωp. ∆j are de-
tunings of energy state |j〉 (j = 3, 4). (b) Three-state ARG
system used in Ref [12].
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and γ3 the decay rate of the state |3〉. 2Ωx (x = L1,
L2, p) is the Rabi frequency associated with the relevant
laser-driven atomic transition.

In order to predict the propagation of the probe field,
Eq. (1) must be solved simultaneously with Maxwell
equation for the probe field, which is reduced to the
form

i
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Ωp + κA4A
∗

3 = 0 (2)

under a slowly-varying envelope approximation, where c
is the light speed in vacuum and κ = Naωp|p23|2/(2ǫ0ch̄)
with Na being the atomic density, p34 the electric dipole
matrix element for the transition from |3〉 to |4〉.

We assume that atoms are initially populated in the
states |1〉 and |2〉. Under the action of the strong CW
pump field, a significant transfer of the population from
ground states |1〉 and |2〉 to the excited state |4〉 can oc-
cur. Furthermore, Doppler effect is significant for the
warm atomic vapor at room temperature. In order to
suppress a large gain and the Doppler effect, we as-
sume that the one-photon detuning ∆4 is large enough.
In addition, large ∆4 and active gain scheme can make
the probe field maintain or gain its amplitude, result-
ing in excellent signal-to-noise ratio. Since ΩL1,L2≫Ωp

and A1,2≫A3, Eq. (1d) can be solved under adiabatical
approximation. We obtain

A4 = −ΩL1

d4
A1 −

ΩL2

d4
A2. (3)

Substituting Eq. (3) into Eqs. (1a) and (1b), we obtain
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It is easy to get the solutions of A1 =
A1(0)exp{−i[(|ΩL1|2 + |ΩL2|2)/d4]t} and A2 =
A2(0)exp{−i[(|ΩL1|2 + |ΩL2|2)/d4]t}. Substituting Eq.
(3) into Eqs. (1c) and (2), and using the solutions of Eq.
(4), we obtain
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where β = (|ΩL1|2 + |ΩL2|2)/d4. The exponential func-
tion in the above equations can be further eliminated
by introducing A3= A′

3exp[−iRe(β)] under the condition
that Re[β] ≫ Im[β].

By using Fourier transform, Eq. (5) is converted into
(
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where β̃ = (|ΩL1|2 + |ΩL2|2)∆4/(∆2
4 + γ2

4), a′

3 and Λp

are the Fourier transforms of A′

3 and Ωp, respectively.
Solving Eq. (6) yields

Λp(z, ω) = Λp(0, ω)eiK(ω)z, (7)

where

K(ω) =
ω

c
− κ

|ΩL1 + ΩL2|2
2(β̃ − ω + d∗3)|d4|2

(8)

is the linear dispersion relation of the system. When ob-
taining Eq. (8), A1(0) = A2(0) =

√
2/2 is assumed, i.e.,

the atoms are initially populated equally in the states |1〉
and |2〉.

In most operation conditions, K(ω) can be expanded
into a rapid conversion power series around the cen-
ter frequency ωp of the probe field (ω = 0). We thus
have K(ω) = K0 + K1ω + 1

2K2ω
2 + · · · , with Kj =

[∂jK(ω)/∂ωj]|ω=0 (j = 0, 1, 2, · · · ). With Eq. (8),
the dispersion coefficients Kj can be obtain analytically
and their physical interpretation is rather clear. K0 =
φ+iα/2 describes the phase shift φ per unit length and
absorption (gain) coefficient α of the probe field with

φ = −κ
|ΩL1 + ΩL2|2∆3

2[(β̃ + ∆3)2 + γ2
3 ](∆2

4 + γ2
4)

, (9a)
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3 ](∆2

4 + γ2
4)

. (9b)

We see that since α < 0, the probe field acquires a gain
during the propagation, which is different to EIT-based
schemes where a probe field always suffers an attenu-
ation. Furthermore, both the phase shift and intensity
gain of the probe field are proportional to |ΩL1 + ΩL2|2,
and hence we can manipulate the relative phase of the
two pump fields to implement an effective control over
them. Particularly, if the two pump fields satisfy ΩL1 =
ΩLexp(iθ) and ΩL2 = ΩLexp[i(θ + π)], a destructive in-
terference happens and hence φ = α = 0. Consequently,
the static intensity gain and phase shift can be elimi-
nated simultaneously in this order. This behavior is very
different from that in the system with a two-mode ARG
core (Fig. 1(b)) where a gain of the probe field is always
present even a static phase shift is eliminated[12].

The linear coefficient K1 determines the group veloc-
ity of the probe field given by Vg = 1/Re(K1). From Eq.
(8), we obtain

Vg =

{

1

c
− κ

2

|ΩL1 + ΩL2|2[(β̃ + ∆3)
2 − γ2

3 ]

[(β̃ + ∆3)2 + γ2
3 ]2(∆2

4 + γ2
4)

}
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Fig. 2. (a) Intensity gain α (dashed line) and phase shift
φ (solid line) of the probe field as functions of the relative
phase ∆θ = θ1 − θ2 between the two pump fields. (b) Group
velocity of the probe field Vg/c as a function of the relative
phase ∆θ.

Fig. 3. Possible design of a gain switch based on the present
ARG scheme. ΩL1,L2: pump fields; Ωp: probe field. L:
length of the gas cell.

It is easy to show that the probe field can be either
superluminal or subluminal, depending on the system
parameters. However, if ΩL1 = ΩLexp(iθ) and ΩL2 =
ΩLexp[i(θ + π)], the probe field travels with c.

The group velocity dispersion can be characterized by
the quadratic coefficient K2 = −κ|ΩL1 + ΩL2|2/[(β̃ +
d∗3)

3|d4|2]. For a Gaussian input of the probe field, i.e.,
Ωp(0, t) = Ωp(0, 0)exp(−t2/τ2

0 ) with the pulse length τ0,
we obtain

Ωp(z, t) =
Ωp(0, 0)

√

b1(z) − ib2(z)

×exp

[

iK0z − (t − K1z)2

[b1(z) − ib2(z)]τ2
0

]

, (11)

where b1(z) = 1+2zIm(K2)/τ2
0 and b2(z) = 2zRe(K2)/τ2

0 .
Equation (11) shows that linear and quadratic dispersion
effects contribute to the probe field attenuation (gain),
phase shift, group velocity, and propagation-dependent
pulse spreading. These effects can be effectively con-
trolled by the relative phase of two pump fields since the
coefficients characterizing these effects are both propor-
tional to |ΩL1 + ΩL2|2.

Now we consider an atomic system that can be real-
ized by a room-temperature alkali atomic vapor. Phys-
ical parameters suitable to this system are given as
2γ3 = 1.0×105 Hz and 2γ4 = 500 MHz. We take
κ = 1.0 × 109 cm−1· s−1, ΩL1 = ΩL2 = 1.0 × 107

s−1, ∆3 = 5.0 × 108 s−1, and ∆4 = 1.0 × 109 s−1.
With these parameters, we get K0 = −(1.90 + i0.10) ×
10−1 cm−1, K1 =−(1.91 + i0.19) × 10−7 cm−1· s, and
K2 =−(3.84 + i0.59) × 10−13 cm−1· s2. We see that the
imaginary part of the coefficients are much smaller than

their corresponding real part. The ratio of the group ve-
locity to the light speed in vacuum Vg/c = −1.7 × 10−4

and hence the probe field travels with a superluminal
propagating velocity. If taking ΩL1 = 1.0 × 107 s−1 and
ΩL2 = 1.0 × 107 exp(iπ) s−1 without changing any other
parameters, we get K0 = K2 = 0 and K1 = 0.33× 10−10

cm−1· s, and hence the ratio Vg/c = 1.0.
Figure 2(a) shows the curves of intensity gain α

and phase shift φ of the probe field versus the rel-
ative phase ∆θ = θ1 − θ2 between the two pump
fields. Figure 2(b) shows the curve of the ratio of
group velocity of the probe field to the light speed
in vacuum, Vg/c, versus ∆θ. When plotting the
figure, we have taken ΩL1 = 1.0 × 107 exp(iθ1) s−1,
ΩL2 = 1.0× 107 exp(iθ2) s−1 and kept the other parame-
ters as given above. We see that the gain, phase shift, and
group velocity of the probe field can be tuned through
changing the relative phase of the two pump fields. The
phase shift is the maximum when taking ∆θ = 2π. The
negative group velocity of the probe field demonstrates
the superluminal characteristic of the system.

The interesting feature of our scheme presented above
allows us to implement possible rapidly responding opti-
cal switches and logic gates. As an example, we construct
a gain switch by means of the controllable intensity gain.
As we have mentioned, when ∆θ = 0 two pump fields
constructively interfere, the probe field intensity acquires
a maximum gain. However, when ∆θ = π the two pump
fields destructively interfere, there is no gain acquired
by the probe field. If taking Ωp = 1.0 × 106 s−1, the
length of the atomic gas cell L = 10 cm , and other pa-
rameters being the same as given above, we obtain the
intensity gain |α| = 0.19 and the probe intensity grows
about 21% resulting from the constructive interference
of the two pump fields. The possible design of such a
gain switch is shown in Fig. 3. The two pump fields ΩL1

and ΩL2 are produced by the same laser source. If we
put a π-phase shifter, the two pump fields will destruc-
tively interfere and the output of the probe field will be
totally absorbed by the absorber. If we take away the
π-phase shifter, the two pump fields will constructively
interfere and the output of the probe field will not be
totally absorbed due to the acquired intensity gain. The
unabsorbed intensity of the probe field is about 7.0×10−2

mW/cm2. The response time of the gain switch in the
present ARG scheme is faster than EIT schemes because
of the superluminal characteristic of the system.

In conclusion, we have proposed a four-level tripod
scheme with an ARG for obtaining phase-controlled gain,
phase shift, and group velocity at room temperature. We
have shown that the new scheme can be used to elimi-
nate significant probe field attenuation and distortion
unavoidable in EIT-based schemes. The intensity gain,
phase shift, and group velocity of a probe field can be
simultaneously manipulated and controlled, which can
be applied to the design of rapidly responding optical
switches and gates for information science.
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